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Abstract. The half-filled Hubbard model on the Bethe lattice with coordination number z = 3 is studied
using the density-matrix renormalization group (DMRG) method. Ground-state properties such as the
energy per site E, average local magnetization 〈Ŝz(i)〉, its fluctuations 〈Ŝz(i)2〉 − 〈Ŝz(i)〉2 and various spin
correlation functions 〈Ŝz(i)Ŝz(j)〉 − 〈Sz(i)〉〈Sz(j)〉 are determined as a function of the Coulomb interaction
strength U/t. The local magnetic moments 〈Ŝz(i)〉 increase monotonically with increasing Coulomb repul-
sion U/t showing antiferromagnetic order between nearest neighbors [〈Ŝz(0)〉 ' −〈Ŝz(1)〉]. At large U/t,
〈Ŝz(i)〉 is strongly reduced with respect to the saturation value 1/2 due to exchange fluctuations between
nearest neighbors (NN) spins [|〈Sz(i)〉| ' 0.35 for U/t→ +∞]. 〈Sz(i)2〉 − 〈Sz(i)〉2 shows a maximum for
U/t = 2.4–2.9 that results from the interplay between the usual increase of 〈Sz(i)2〉 with increasing U/t
and the formation of important permanent moments 〈Sz(i)〉 at large U/t. While NN sites show antifer-
romagnetic spin correlations that increase with increasing Coulomb repulsion, the next NN sites are very
weakly correlated over the whole range of U/t. The DMRG results are discussed and compared with tight-
binding calculations for U = 0, independent DMRG studies for the Heisenberg model and simple first-order
perturbation estimates.

PACS. 71.10.Fd Lattice fermion models (Hubbard model etc.) – 75.10.Lp Band and itinerant models

1 Introduction

Bethe lattices or Cayley trees have often been the basis of
very attractive models for the theoretical study of various
properties of solids. A Bethe lattice is completely charac-
terized by the number of nearest neighbors z and by the
lack of closed loops. The later feature simplifies calcula-
tions considerably allowing in many cases to obtain useful
insights on the physics of complex problems, for example,
in the theory of many electron systems or in the theory of
alloys and other disordered systems. Recently, the inter-
est in the study of strongly correlated fermions on Bethe
lattices has been renewed by the advances achieved in the
limit of infinite spatial dimensionality (d → ∞) [1]. In-
deed, this lattice provides a systematic mean of realizing
the d = ∞ limit by letting z → ∞ and by scaling the
nearest neighbor (NN) hopping integrals as t = W/(4

√
z),

where W refers to the band width. In this context, an
important research effort has been dedicated to the half-
filled Hubbard model. This concerns mainly the metal-
insulator transition within the paramagnetic phase but
also the properties of the antiferromagnetic (AF) phase
which in the absence of frustrations is the most stable so-
lution at low temperatures (bipartite lattice) [2–4]. There-
fore, it would be of considerable interest to determine the
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properties of the half-filled Hubbard model on a Bethe
lattice with finite z by using accurate numerical methods.
Even though the computational effort increases extremely
rapidly with z, such numerical studies could be very use-
ful, particularly in view of comparing them with z = ∞
results including 1/z corrections.

The aim of this paper is to determine several ground-
state properties of the half-filled Hubbard model on a
z = 3 Bethe lattice as a function of the Coulomb interac-
tion strength U/t. For this purpose we take advantage of
a property that Bethe lattices share with one-dimensional
(1D) chains, namely, the fact that there is only one path
between any pair of sites in the system. This characteris-
tic allows the design of a simple real-space renormalization
scheme in order to apply the density-matrix renormaliza-
tion group (DMRG) method [5]. Density-matrix renormal-
ization is a very powerful technique which was proposed a
few years ago in the context of 1D spin systems. Since then
it has been rapidly extended to become one of the leading
numerical tools for the study of low-dimensional correlated
quantum systems, including recently two-dimensional lat-
tices of finite size [6]. The success and wide range of appli-
cations found by this approach rely on two main qual-
ities: its high accuracy even for systems as large as a
few hundreds of sites, which allows safe extrapolations
to the thermodynamic limit, and its flexibility concern-
ing the model Hamiltonian under study (Heisenberg, t-J ,
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Fig. 1. Illustration of the Bethe lattice with coordination num-
ber z = 3. The numbers label non-equivalent sites.

Hubbard, Kondo, etc). However, except for works on the
spin-1/2 XXZ and Heisenberg Hamiltonians [7], the infi-
nite DMRG calculations have always been limited to 1D
problems. To our knowledge, this is the first time that
the DMRG algorithm for infinite systems is applied to a
fermion model not having the 1D topology.

The remainder of the paper is organized as follows.
In the next section the main details of the application of
the DMRG method to the Bethe lattice are given. Results
for the ground-state energy and several spin and charge
local properties are presented and discussed in Section 3.
Finally, Section 4 summarizes our conclusions.

2 Details of the calculation

We consider the Hubbard Hamiltonian [8]

H = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + U
∑
i

n̂i↑ n̂i↓ (2.1)

on a Bethe lattice with coordination number z = 3 (see
Fig. 1). In the usual notation, ĉ†iσ (ĉiσ) creates (annihi-
lates) an electron with spin σ at site i, n̂iσ = ĉ†iσ ĉiσ is the
number operator, t refers to the nearest neighbor (NN)
hopping integral, and U to the on-site Coulomb repulsion.
Several ground-state properties of the Hubbard model are
determined using the DMRG method [5]. This is an it-
erative projection technique which allows to include the
most relevant part of the ground-state wave function on a
limited number of many-body states. The system is parti-
tioned into several regions in real space or blocks, between
which renormalized interactions are computed. The accu-
racy of the method is controlled by the number of states m
retained for the description of each block. In the DMRG
algorithm for infinite systems, the size of the system is in-
creased at each renormalization step and the properties of
the thermodynamic limit are determined by extrapolating
the succession of finite system calculations.

The renormalization procedure used for the z = 3
Bethe lattice is illustrated in Figure 2. Starting from a
central site i = 0 and the two shells of its first and second
NN’s, a new shell of NN’s is added at each iteration ν.
The total number sites is thus given by Na = 3× 2ν − 2.
Notice the contrast with the usual DMRG scheme for 1D

b)a)

Fig. 2. (a) Renormalized Bethe lattice (z = 3, see Fig. 1) and
(b) renormalization procedure (ν ≥ 3). Circles represent sites
which are treated exactly and rectangles represent renormal-
ized blocks. Notice that the total number of sites Na = 3×2ν−2
increases exponentially with the number of renormalization it-
erations ν.

systems [5] where Na increases linearly with ν. The cen-
tral site and its NN’s (the sites on the first shell) are
treated exactly at all iterations and the renormalizations
are performed on the two branches that start at each of
the first-shell sites. The DMRG step treats two renormal-
ized blocks plus two sites as the system block, leaving
the remaining block and two sites as environment block
(see Fig. 2). Notice that no renormalization is actually
done until ν = 3, i.e., the 10-site system with two sites in
each block is treated exactly. In practice, the extrapola-
tions of the considered properties to ν →∞ converge after
ν ' 15 iterations. At this point Na ' 2 × 105. It should
be however noted that in a Bethe lattice the surface to
volume ratio does not vanish with increasing number of
shells L. Taking into account that the number of sites in
the lth shell is Ns = z(z − 1)l−1 (l ≥ 1), one finds for
z = 3 that 1/2 of the sites belong to the outermost shell,
1/4 to the first shell below the surface, 1/8 to the sec-
ond shell below the surface and so forth. Consequently,
global properties of the system such the average ground-
state energy per site Es are dominated by the outermost
shells. Bulk properties corresponding to the translational
invariant situation have to be calculated locally. For in-
stance, the ground-state energy per site E is determined
from E = U〈n̂0↑n̂0↓〉+(zt/2)

∑
σ〈ĉ
†
1σ ĉ0σ+ĉ†0σ ĉ1σ〉 by using

the density matrix reduced to the central sites i = 0 and
i = 1 (see Fig. 1). In Section 3 it will be shown that the
present DMRG algorithm yields accurate results for both
global properties including the surface and local bulk-like
properties.

For the calculations we take advantage of a theorem
by Lieb which states that for U > 0 the ground-state
spin S of the half-filled Hubbard Hamiltonian on a bi-
partite lattice is S = |EA − EB|/2, where EA and EB

are the number of sites belonging to the two sublattices
A and B (Na = EA + EB even) [9]. In the Bethe lat-
tice considered in this paper, even and odd shells con-
stitute the two sublattices A and B (NN hopping). At
the renormalization iteration ν the ground-state spin is
S = 2ν−1 so that the calculations can be performed in the
subspace of maximal Sz = S. This exact result provides
an important simplification that appears to be crucial in
order to achieve reliable results with present computer
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Fig. 3. Ground-state energy per site of the half-filled Hubbard
model on a z = 3 Bethe lattice as a function of the Coulomb
repulsion U/t. The solid curve is calculated locally at the cen-
tral sites from E = U〈n̂0↑n̂0↓〉 + (zt/2)

P
σ〈ĉ
†
1σ ĉ0σ + ĉ†0σ ĉ1σ〉

(see Fig. 1). The dashed curve is the average energy Es of
the complete system including the surface. Crosses (plus signs)
correspond to even (odd) renormalization iterations. The corre-
sponding exact results for U = 0 are given by the open circles.

facilities, since for Sz = S the Hilbert space is much
smaller than for Sz = 0. Thus, the number of statesm kept
in the renormalized blocks can be reduced significantly
without loss of accuracy. For example, for U = 0, we
have performed DMRG calculations by using Sz = 0 and
Sz = S, keeping in both cases m = 20 states in the renor-
malized blocks. After the first few iterations one finds im-
portant differences in the ground-state energy per site,
the Sz = 0 converged results being 2.6 × 10−2t higher
than those corresponding to Sz = S. Moreover, the sum
Pm of the retained eigenvalues of the density matrix — a
good criterion to estimate the quality of a DMRG calcu-
lation [5] — follows the same trend. Indeed, for Sz = S,
1− Pm is always smaller than 7 × 10−4 while for Sz = 0,
1− Pm can be as large as 2× 10−2, a value that in prac-
tice is too large for obtaining reliable results. In addition
it should be noted that the uncorrelated limit is the most
difficult case in DMRG calculations. 1− Pm is in fact al-
ways smaller for finite U/t than for U = 0 [11]. The results
presented in this paper were obtained for Sz = S by keep-
ing m = 20 states in each renormalized block. This would
correspond to 44m3 = 2, 048, 000 possible configurations.
However, only between 100, 000–130, 000 of them belong
to the Sz = S subspace. Still, the dimension of the system-
block density-matrix, 16m2 = 6400, is quite important,
which renders the computations very demanding.

3 Results and discussion

In Figure 3 results are given for the ground-state energy
per site as a function of U/t. Since in the Bethe lattice
the weight of the atoms close to the surface does not van-
ish with increasing number of shells, it is necessary to

discern between global properties, which include surface
contributions, and local properties calculated close to the
central site i = 0. The global energy Es (dashed curve) is
derived by extrapolating the ground-state energy per site
for L→∞. The effects of truncation to m = 20 states per
renormalized block can be inferred by comparison with ex-
act results for some limiting cases. For U = 0 the DMRG
calculations yield Es = −1.102 68t, while the exact results
obtained by diagonalizing the finite-L tight-binding ma-
trix and extrapolating to L→∞ is Eex

s = −1.103 06t (see
Appendix). The agreement seems quite remarkable, since
Es is given by the contributions of the atoms of the out-
ermost shells that are renormalized already from the very
first iterations. Let us recall that 1/2 of the sites belong to
the surface, 1/4 to the layer below the surface, and so on.
Similarly good results are obtained for the local ground-
state energy per site E (solid curve) which is obtained
from the density matrices at the central sites extrapolated
for L → ∞. For U = 0, we obtain E = −1.524 7t, while
the integral of the single-particle density of states of the
Bethe lattice is Eex = −1.525 5t. The renormalized blocks
thus provide a proper embedding of the central sites. It is
worth noting that the accuracy of these results, derived by
keeping only m = 20 states per block and setting Sz = S
at each iteration, is comparable to the accuracy of cal-
culations with m = 100–150 in the 1D Hubbard model
(Sz = 0). It goes without saying that m = 100 calculations
on a Bethe lattice are hardly feasible with present com-
puter facilities. Since the uncorrelated limit is the most
difficult (less precise) case in DMRG calculations on the
Hubbard model [11], we may expect that the results for
finite U/t are at least as accurate. This is also confirmed
by the fact that the sum Pm of the retained eigenvalues
of the block density-matrix increases with U/t.

E and Es increase monotonously with U/t and vanish
as expected in the Heisenberg limit. Their U/t dependence
are very similar. In fact, allowing for a rescaling of the en-
ergies at U = 0, E/E(U=0) and Es/Es(U=0) are close to
the corresponding results for the 1D Hubbard chain [10].
Quantitatively, Es is always higher than E due to surface
boundary effects. Surface sites at the outermost shell have
a smaller local coordination number z = 1. Therefore the
effective local band width and binding energy of surface
sites are smaller than in the bulk.

Several local properties have been calculated around
the central site i = 0 in order to analyze the behavior
of the ground-state in the bulk limit. Results for the
average local magnetic moment 〈Ŝz(0)〉 are shown in
Figure 4. 〈Ŝz(0)〉 increases monotonously with U/t
reaching 0.35 in the Heisenberg limit. Moreover, for NN
sites (i = 0 and i = 1) we obtain 〈Ŝz(1)〉 ' −〈Ŝz(0)〉
and 〈Ŝz(1′)〉 ' 〈Ŝz(1)〉 (|〈Ŝz(0) + Ŝz(1)〉| ≤ 10−4). The
sign alternation of 〈Ŝz(i)〉 at sites belonging to dif-
ferent sublattices A and B suggests the existence of
strong NN AF correlations, as it shall be discussed in
more detail below. Notice that the calculated 〈Ŝz(0)〉
does not vanish in the uncorrelated limit as it should.
From the tight-binding solution for the Bethe lat-
tice with a finite number of shells L one obtains



424 The European Physical Journal B

0.0 0.2 0.4 0.6 0.8
U/(U+4t)

0.0

0.1

0.2

0.3

0.4

<
S

Z
(0

)>
 

Even number of shells
Odd number of shells

Fig. 4. Average magnetization 〈Ŝz(0)〉 for the half-filled Hub-
bard model on a Bethe lattice (z = 3) calculated at the central
site i = 0. Circles indicate tight-binding exact results (U = 0)
or perturbation theory estimates (U = ∞). The filled square
(U =∞) is the DMRG result for the Heisenberg model on the
z = 3 Bethe lattice.

〈Ŝz(0)〉 = 1/(3L+ 2) for L even and 〈Ŝz(0)〉 = 0 for L
odd (see Appendix). Thus, in finite-size systems with even
L the local magnetization does not vanish even for U = 0
(Sz = S). Our DMRG calculations follow precisely
the exact results during the first renormaliza-
tion iterations but for large ν a slight increase
of 〈Ŝz(0)〉 is observed for L odd which yields
a small non-zero value in the extrapolation
to L → ∞ (〈Ŝz(U=0)〉 = 0.025). We therefore ex-
pect that this inaccuracy will be remedied by increasing
the number of states kept in each renormalized block.
In any case, since the DMRG method has better con-
vergence properties with increasing U/t, the precision
of the results improves rapidly for finite values of the
interaction. In fact, in the strongly correlated limit, the
calculated 〈Sz(0)〉 = 0.35 is in very good agreement with
perturbative estimations and with DMRG calculations
using the Heisenberg Hamiltonian.

Small differences are found in the results for even and
odd iterations. These are a consequence of the limited
number m of states kept per block and of the fact that the
infinite-lattice results are obtained by extrapolation of a
succession of finite-system calculations. Even and odd it-
erations correspond, respectively, to even and odd number
of shells L. The properties of finite systems show even-odd
oscillations as a function of L, the amplitude of which de-
creases with increasing number of shells and vanishes for
the infinite system. These trends are well reproduced by
the DMRG results for finite L. The discrepancies in the
extrapolations for even-L and odd-L reflect inaccuracies
due to the small number of states m, they are reduced
by increasing m. Since the extrapolations to L = ∞ are
performed independently for even and odd L, the small
differences found in the final results show that such dis-
crepancies are not significant (see Fig. 4).

In order to analyze the strongly interacting Heisenberg
limit we approximate the ground-state wave function by
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Fig. 5. Bethe-lattice results for the average spin fluctuations
〈Ŝ2
z〉 − 〈Ŝz〉2 as a function U/t, where Ŝz = Ŝz(0) (single site,

solid curve), Ŝz = Ŝz(0) + Ŝz(1) (NN spins, dashed curve)

and Ŝz = Ŝz(1) + Ŝz(1
′) (NNN spins, dotted curve). See Fig-

ure 1. Circles indicate tight-binding exact results (U = 0) or
perturbation theory estimates (U =∞). The filled squares (di-
amonds) for U =∞ show the DMRG results for the Heisenberg
model on the z = 3 Bethe lattice corresponding to odd (even)
iterations.

including first-order perturbations to the Néel state φ0:

ψ(1) = φ0 −
1

2(z − 1)

∑
〈i,j〉

(S+
j S
−
i + S−j S

+
i )φ0 . (3.1)

Notice that the coefficient of the first-order correction
(spin-flip states) is independent of the exchange constant
J = 4t2/U , since the off-diagonal matrix elements (J/2)
and the energy differences

(
2(z − 1)J/2

)
are both pro-

portional to J in the Heisenberg model. The average of
local operators Ô (e.g., Ô = Ŝz(0) or Ô = Ŝz(0)Ŝz(1)) are
obtained from

〈Ô〉 =
Tr[ρ̂Ô]
Tr[ρ̂]

, (3.2)

where ρ̂ refers to the reduced density matrix. For exam-
ple, for a single site, equation (3.1) yields ρ(↑, ↑) = 1,
ρ(↓, ↓) = 3/16, and ρ(↑, ↓) = ρ(↓, ↑) = 0. In this way one
obtains 〈Ŝz(i)〉 = 13/38 = 0.342, which compares very
well with the DMRG result 〈Ŝz(i)〉 = 0.348 for U/t = 128.
We conclude that the reduction of 〈Ŝz(i)〉 with respect
to the saturation value 1/2 at very large U/t is the re-
sult of quantum spin fluctuations involving mainly the
first NN shell of atom i. In addition, we have also per-
formed DMRG calculations for the Heisenberg model on
the z = 3 Bethe lattice which confirm the Hubbard results
at U/t� 1 (〈Ŝz(i)〉 = 0.347, see Fig. 4).

In Figure 5 results are given for the fluctuation of the
local magnetic moments at a single site and at pairs of NN
and NNN sites. In all cases, 〈S2

z 〉− 〈Sz〉2 presents a maxi-
mum for U/t = 2.4–2.9. This behavior is a consequence of
the interplay between the reduction of double occupations
due to correlations, which increases 〈S2

z 〉, and the forma-
tion of permanent magnetic moments 〈Sz〉, which reduces
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Fig. 6. 〈Ŝz(0)2〉 of the half-filled Hubbard model as a function
U/t. The solid curve corresponds to the z = 3 Bethe lattice and
the dashed curve to the one-dimensional chain (z = 2). Circles
indicate tight-binding exact results (U = 0) or perturbation
theory estimates (U =∞). The filled square for U =∞ shows
the DMRG result for the Heisenberg model on the z = 3 Bethe
lattice.

the fluctuation of the spin moments around their average
(see Fig. 4). As shown in Figure 6, 〈S2

z 〉 in the Bethe lattice
increases monotonously with U/t very much like in the 1D
Hubbard chain. The main qualitative difference between
Bethe-lattice and 1D results for 〈S2

z 〉 − 〈Sz〉2 comes from
〈Sz〉 which is zero for the 1D case. Notice that the DMRG
calculations are in good quantitative agreement with the
tight-binding analytic results (open circles, U = 0), with
independent DMRG calculations for the spin-1/2 Heisen-
berg model (filled squares and diamonds, U = ∞), and
with the first-order-perturbation estimation from equa-
tions (3.1, 3.2) (open circles, U =∞).

The longitudinal spin correlation functions γij =
〈Ŝz(i)Ŝz(j)〉 − 〈Ŝz(i)〉〈Ŝz(j)〉 between NN and NNN sites
i and j are given in Figure 7. Notice that γij is not pro-
portional to the rotational invariant spin correlation func-
tion 〈S(i) · S(j)〉 − 〈S(i)〉 · 〈S(j)〉 (including the transver-
sal directions) since the calculations were performed in
the Sz = S subspace. NN spins show strong AF correla-
tions that are important already for U = 0 and that be-
come even stronger as U/t increases. A shallow maximum
is observed approximately at the same value of U/t for
which 〈S2

z 〉 − 〈Sz〉2 is maximal. As expected, good agree-
ment is obtained between the Hubbard results for large
U/t and independent DMRG calculations for the Heisen-
berg model. First-order estimates of γij derived from equa-
tion (3.1) are somewhat less accurate than the correspond-
ing estimates of 〈Ŝz(0)〉 or 〈Ŝ2

z (0)〉 but they still remain
qualitatively correct (see Figs. 4 and 6). The spin correla-
tions between NNN’s are much weaker than between NN’s.
Moreover, in this case parallel alignment is slightly favored
as U/t increases (〈Ŝz(1)Ŝz(1′)〉 − 〈Ŝz(1)〉〈Ŝz(1′)〉 > 0).
These trends are consistent with the sign alternations in
〈Ŝz(i)〉 found around the central site for i belonging to
different sublattices. The strong AF correlations between
NN’s may first suggest the possibility of a spin-density-
wave instability in the bipartite Bethe lattice. However,

0.0 0.2 0.4 0.6 0.8
U/(U+4t)

−0.06

−0.04

−0.02

0.00

<
S

Z
(i)

S
Z
(j)

>
 −

 <
S

Z
(i)

>
<

S
Z
(j)

> NNN

NN

Fig. 7. Spin correlation functions 〈Ŝz(i)Ŝz(j)〉−〈Ŝz(i)〉〈Ŝz(j)〉
between NN sites and NNN sites. For U = ∞, the open cir-
cle indicates a perturbation-theory estimate (Eq. (3.1)) and
the filled squares (diamonds) show the DMRG results for the
Heisenberg model on the z = 3 Bethe lattice corresponding to
odd (even) iterations.
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Fig. 8. Bethe-lattice results for the density fluctuations 〈n̂2〉−
〈n̂〉2 as a function U/t, where n̂ = n̂(0) (single site, solid curve),
n̂ = n̂(0) + n̂(1) (NN sites, dashed curve) and n̂ = n̂(1) + n̂(1′)
(NNN sites, dotted curve). n̂(i) = n̂i↑ + n̂i↓, see Figure 1.

the very small values of the NNN correlations cast doubts
on the existence of long-range Néel like order. This more
subtle issue cannot be decided on the basis of the com-
puted properties, since this would require a systematic
calculation of the long-range spin correlations as a func-
tion of distance.

The average density 〈n̂(i)〉 at the central sites i = 0
and i = 1 is very close to 1 independently of U/t, which
confirms the expected absence of a charge-density wave
for U ≥ 0 (|〈n̂i↑ + n̂i↓〉 − 1| < 10−4). The fluctuations
of the density at a single site, and at pairs of NN and
NNN sites are given in Figure 8. In all cases we ob-
serve a monotonic crossover from the uncorrelated regime
(〈n̂2〉−〈n̂〉2 maximal) to the strongly correlated, localized
regime where charge fluctuations are suppressed. The U/t
dependence is quite similar to what is obtained for 1D
Hubbard model. The density fluctuation at a pair of NNN
sites (dotted curve) is approximately twice the single-site
result (solid curve) which indicates, as in the case of the
spin degrees of freedom, that density correlations between
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NNN’s are very weak (〈n̂(1)n̂(1′)〉 − 〈n̂(1)〉〈n̂(1′)〉 ' 0).
In contrast, for NN sites charge fluctuations are sig-
nificantly smaller. One observes that 〈[n̂(0) + n̂(1)]2〉 −
〈n̂(0) + n̂(1)〉2 ' (3/2)[〈n̂(0)2〉 − 〈n̂(0)〉2] or equivalently
〈n̂(0)n̂(1)〉 − 〈n̂(0)〉〈n̂(1)〉 ' [〈n̂(0)2〉 − 〈n̂(0)〉2]/2. Notice
that these relations hold approximately for all values of
U/t, even for U = 0. The ratio between single-site charge
fluctuations and fluctuations on a pair of NN’s is not much
affected by changes in the Coulomb repulsion strength.
Therefore, this seems to result mainly from the geometri-
cal proximity of NN sites.

4 Conclusion

Several ground-state properties of the half-filled Hubbard
model have been determined on the Bethe lattice with co-
ordination z = 3 by using a density-matrix renormaliza-
tion group (DMRG) algorithm for open infinite systems.
Although the lattice is not one dimensional (1D), the ex-
istence of a unique path between any pair of sites allows
to formulate a simple renormalization procedure. In con-
trast to previous density-matrix renormalization studies
of Hubbard-like models on 1D chains or ladders, where
the number of sites Na increases linearly with the num-
ber of iterations ν, Na increases here exponentially with ν
(Na = 3× 2ν − 2). This is a consequence of the fact that
2 blocks are renormalized into a single one at each iter-
ation. Despite the very rapid increase of Na, the DMRG
method provides accurate results over the whole range of
U/t already by keeping few states per block (m = 20). In
practice, this is achieved by working in the subspace of
maximal spin projection Sz = S, where the ground-state
spin S = 2ν−1 is derived from a theorem by Lieb [9]. For
example, in the limit of U = 0 the calculated ground-state
energy per site differs by only 3 × 10−4t from the exact
tight-binding result. It is remarkable that this level of pre-
cision concerns not only local properties calculated at the
unrenormalized central sites, but also global properties
which are dominated by the renormalized sites of the out-
ermost shells. From a general point of view, the present
study encourages renormalizations of more than one block
into a system block in future DMRG algorithms.

The main results for the z = 3 Bethe lattice may
be summarized as follows. The local magnetic moments
〈Ŝz(i)〉 at the central site i = 0 and its NN’s i = 1 in-
crease monotonically with U/t showing AF local order
among the spin polarizations at sites belonging to differ-
ent sublattices of the bipartite Bethe lattice (〈Ŝz(1)〉 '
−〈Ŝz(0)〉). The maximum 〈Ŝz(i)〉 found in the Heisenberg
limit (〈Ŝz(i)〉 = 0.35) is reduced with respect to the sat-
uration value 〈Ŝz(i)〉 = 1/2 as a result of exchange flips
between the spin at site i and the spins at its NN’s that
point in the opposite direction. The fluctuations of the
local spins 〈Sz(i)2〉− 〈Sz(i)〉2 show a maximum as a func-
tion of U/t for U/t = 2.4–2.9. For small U/t the usual
increase of 〈Sz(i)2〉 due to the reduction of double occu-
pations dominates, while for large U/t the formation of

large permanent moments 〈Sz(i)〉 blocks local spin fluctu-
ations. NN sites show strong AF spin correlations that in-
crease with increasing Coulomb repulsion. However, NNN
sites are very weakly correlated over the whole range of
U/t. The AF correlations seem to be very short ranged
in contrast to the static picture of a spin density wave.
This reflects the importance of quantum fluctuations in
the z = 3 Bethe lattice as in 1D systems.

Taking into account that the Bethe lattice is one of
the standard models for the studying the limit of infinite
dimensions, it would be very interesting to compare the
present results for z = 3 with the outcome of the d = ∞
equations in order to quantify the importance of 1/d cor-
rections. Although there is no intrinsic impediment for
applying the method proposed in this paper to z > 3, it
is also true that the computational effort involved in such
calculations increases extremely rapidly with z. System-
atic DMRG studies for large z seem therefore unfeasible.
Still, an extension of the present work to moderately small
z (e.g., z = 4 and z = 5) should become possible in the
near future. In addition, DMRG investigations including
NNN hoppings or using the Bethe lattice for embedding
a finite cluster should be very valuable, particularly since
the information derived from the DMRG method is com-
plementary to finite-temperature quantum Monte-Carlo
calculations.

Computer resources provided by IDRIS (CNRS) are gratefully
acknowledged.

Appendix

The aim of this section is to outline the block diagonaliza-
tion of the tight-binding matrix of a finite Bethe lattice
formed by a central site i = 0 and L successive near-
est neighbor (NN) shells. The number of sites at shell l
(1 ≤ l ≤ L) is given by Ns(l) = z(z−1)l−1, where z refers
to the coordination number. The notation used for label-
ing the lattice sites is illustrated in Figure 9 for z = 3.
A site belonging to the shell l is denoted by the set of l
numbers (i1, i2, . . . il) which define the path to follow in or-
der to reach the desired site starting from the central site
i = 0. The tight-binding matrix H0 of the z = 3 Bethe
lattice with NN hoppings t can be block diagonalized by
using that the finite Bethe lattice is invariant after the
transposition of any pair of branches that connect a site
of shell l − 1 with its 2 NN’s of shell l. For the outermost
shell (l = L) the symmetry adapted single-particle states
are

|i1, i2, . . . iL−1,+〉 =
(
|i1, i2, . . . iL−1, 1〉

+ |i1, i2, . . . iL−1, 2〉
)
/
√

2 (A.1)

|i1, i2, . . . iL−1,−〉 =
(
|i1, i2, . . . iL−1, 1〉
− |i1, i2, . . . iL−1, 2〉

)
/
√

2. (A.2)
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Fig. 9. Labeling of Bethe-lattice sites used in this appendix.

For the other shells (l < L) one proceeds recursively in
the same way building symmetric and antisymmetric lin-
ear combinations. For the first shell the 3-fold symmetry
around the central site i = 0 is applied.

In the new basis H0 splits in a (L+1)× (L+1) matrix
block of the form

A =



0
√

3t 0 · · ·√
3t 0

√
2t 0

0
√

2t 0
√

2t
...

. . . . . . . . . √
2t√

2t 0


, (A.3)

that involves only purely even states including the central
site, and in smaller l× l matrices Bl with 1 ≤ l ≤ L of the
form

Bl =



0
√

2t 0 · · ·√
2t 0

√
2t 0

0
√

2t 0
√

2t
...

. . .
. . .

. . . √
2t√

2t 0


. (A.4)

BL appears twice in H0, and each of the other Bl appears
3× 2L−l−1 instances in the total tight-binding matrix.

The eigenvalues of Bl are βk = −2
√

2t cos kπ
l+1 with k ∈

[1, l], and those of A are αk = −2
√

2|t| cos θk, where the θk
are the roots of 2 sin (L+ 2)θ = sinLθ. The later equation

is solved numerically and the tight-binding energy per site
Es of the finite Bethe lattice is determined for any L.

The extrapolated value for L→∞ is Es = −1.10306t.
Notice that this result differs from the integral of the local
density of states at the central site (E = −1.5255t), since
Es(L→∞) is dominated by surface contributions.
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